A FACILE SYNTHESIS OF α , β -UNSATURATED β -BROMO-N-ACYL- α -AMINO ACIDS

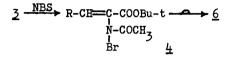
Chung-gi Shin, Katsumi Nanjo, and Juji Yoshimura*

Laboratory of Organic Chemistry, Kanagawa University, Kanagawa-ku, Yokohama 221

*Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology,

Meguro-ku, Tokyo 152

(Received in Japan 12 December 1973; received in UK for publication 2 January 1974)


In previous papers, 1^{-3} we reported the synthesis of α , β -unsaturated N-acyl- α -amino acid ester (3) by the condensation of ethyl α -oxocarboxylate with amide or by the treatment of N-acetoxy-N-acyl- α -amino acid ester with Et₃N. Up to date, however, the available synthetic method of the title compounds <u>6</u> and <u>7</u> has never been reported except the preparation of β -halo-<u>sec</u>- and <u>tert</u>-enamines. 4^{-6} Owing to the synthetic utility of <u>6</u> and <u>7</u>, a facile synthetic method was pursued here.

Attempts on addition of Br_2 to $\underline{\mathcal{Z}}$ (\mathbb{R}^1 =Et) in CHCl₃ and subsequent elimination of HBr was unsuccessful except the direct conversion of <u>3a</u> (\mathbb{R}^1 =t-Bu) into <u>7a</u> (X= CH₃; yield 59%. mp 150°C: X=0Et; yield 60%. mp 154-156°C: X=phthaloyl; yield 38%. mp 188°C). Furthermore, it was found that the treatment of ethyl α -hydroxyaminopropanoate (<u>1a</u>) with bromoacetyl bromide in benzene in the absence of pyridine⁷ gave directly the expected ethyl N-bromoacetyl- α -amino- β -bromo- α -pentenoate (<u>6a</u>; X=CH₂Br, mp 118-119°C), though the yield was 6.7%. It was deduced that the formation of <u>3</u> via the corresponding hydroxamic acid ester (<u>2</u>)² was successively followed by addition of Br₂ formed oxidatively from HBr, and by elimination of HBr to

$$\begin{array}{c} \text{R-CH}_{2}\text{-CH-COOR}^{1} \xrightarrow{\text{XCOBr}} \text{R-CH}_{2}\text{-CH-COOR}^{1} \xrightarrow{-H_{2}O} \text{R-CH}_{2}\text{-COOR}^{1} \xrightarrow{\text{Br}} \text{R-CH}_{2}\text{-COOR}^{1} \xrightarrow{\text{Br}} \text{R-CH}_{2}\text{-COOR}^{1} \xrightarrow{\text{Br}} \text{R-CH}_{2}\text{-COOR}^{1} \xrightarrow{\text{Br}} \text{R-CH}_{2}\text{-COOR}^{1} \xrightarrow{\text{Br}} \text{R-CH}_{2}\text{-COOR}^{1} \xrightarrow{\text{Br}} \xrightarrow{\text{R-CH}_{2}\text{-COOR}^{1}} \xrightarrow{\text{R-CH}_{2}\text{-CO$$

afford the compound $\underline{6}$.

On the other hand, the treatment of $\underline{3}$ with N-bromosuccinimide in CCl₄ gave unstable oily product; tert-butyl N-acetyl-N-bromo- α -alkenoate ($\underline{4e}$; ν_{max} 1740, 1720, 1680 cm⁻¹: $\underline{4b}$; ν_{max} 1740, 1725, 1680 cm⁻¹), in quantitative yields, which gradually rearranged at room temperature for two days to give <u>6</u> as crystals in good yields. Compound <u>6</u> was composed of E- and Z-isomers, which were separated

Scheme 2

chromatography on silica-gel column using benzene-ethyl acetate (5 : 1) as effluent (Table 1). All of the new compounds and their structures have been chracterized spectroscopically and gave satisfactory elementry analysis.

Table 1. tert-Butyl N-Acetyl- α -amino- β -bromo- α -alkenoate (6)

Compound		Mp ^o ca)	Yield (%)	IR Spectrum, cm ⁻¹ in KBr	NMR Spectrum, in CDCl ₃ , NH
6a	E	138-139	54	3340,1715,1680,1645	7.06
	'z	101.5-102.5	36	3340,1715,1685,1640	7.94
6ъ	É	84-87	45	3270,1725,1670,1635	7.16
	z	syrup	18	3270,1730,1680	8.35

a) Recrystallization from dibutyl ether gave colorless needles.

References and Note

- C. Shin, M. Fujii, and J. Yoshimura, Tetrahedron Lett., <u>1971</u>, 2499.
 C. Shin, K. Sato, A. Ohtsuka, K. Mikami, and J. Yoshimura, Bull. Chem. Soc. Japan, in press.
- C. Shin, K. Nanjo, E. Ando, M. Sakurai, and J. Yoshimura, Preprints for the 27th Annual Meeting of the Chemical Society of Japan, Nagoya, October, 1972, Vol. 1, p. 527.
- 3) C. Shin, K. Nanjo, and J. Yoshimura, Chemistry Lett., <u>1973</u>, 1039.
- 4) S. J. Huang and M. V. Lessard, J. Org. Chem., <u>35</u>, 1204 (1970).
- 5) H. Ahlbrecht and M. T. Reiner, Tetrahedron Lett., 1971, 4901.
- 6) L. Duhamel, P. Duhamel, and J-M. Poirier, Tetrahedron Lett., <u>1973</u>, 4237.
- 7) This reaction performing in the presence of pyridine, the corresponding hydroxamic acid esters were obtained in good yield (reference 2).

522